

Coarsening in Solid-Liquid Mixtures-2 ReFlight (CSLM-2 R)

Glenn Research Center

PI: Peter W. Voorhees, Northwestern University

PS: Walter Duval, NASA GRC **PM:** Robert Hawersaat, NASA GRC **Engineering Team:** ZIN Technologies, Inc.

Objective:

- Support the development and improve the accuracy of theoretical models of the Ostwald Ripening (coarsening) process.
- Determine the factors controlling the morphology of solid-liquid mixtures during coarsening.
- Determine the kinetics of the coarsening process, the spatial distribution of the particles, and the particle size distribution as function of the volume fraction of solid.

Relevance/Impact:

- CSLM-2 R results will provide input that will improve design codes that are based on incomplete models and databases.
- CSLM-2 R will thus aid in the development of new high-temperature materials, such as those used in nuclear propulsion and waste heat coolant loops.

Development Approach:

- CSLM-2 Reflight will use low volume fraction samples for the first time on ISS.
- Electrical Control Units (ECUs) were returned to GRC to replace the batteries. The CSLM-2 Reflight support hardware is on-orbit the ISS.
- Samples are developed by the PI and then integrated into the Sample Processing Units (SPUs) by the engineering team.
- One ECU and 3 to 6 SPUs with low volume fraction samples are scheduled for launch on Flight 19A in March 2010.
- Six SPU's with low volume fraction samples will complete the CSLM-2 Reflight test matrix.

CSLM-2 30% high volume sample from ISS Increment 16

Flight SPU#1 and Flight ECU#1 installed in the MSG on board

ISS Resource Requirements

100 110000100 110000100								
Accommodation (carrier)	Microgravity Science Glovebox							
Upmass (kg) (w/o packing factor)	(6.5kg/SPU) 3 to 6 SPUs, 6.4 kg for 1 ECU							
Volume (m³) (w/o packing factor)	0.04 for 3 SPU's							
Power (kw) (peak)	0.15 operate one SPU at time							
Crew Time (hrs) (installation/operations)	14 hours crew time (2, 4, 10, 24, 34, 48 hrs autonomous ops)							
Launch/Increment	19A/Increment 23							

Revision Date: 10/13/2009

Proiect Life Cycle Schedule

	Troject Elle Oyole Genedale												
Milestones	ICR	RDR	PDR	CDR	VRR	Safety	FHA	Launch	Ops	Return	Final Report		
Actual	10/1998	N/A	N/A	9/2000	9/2000	1/2010	2/2010	3/2010	Inc 23	5/2010	Return+18m		
Actual/Baseline													

1